Naphthalene-sulfonate inhibitors of human norovirus RNA-dependent RNA-polymerase.

نویسندگان

  • Delia Tarantino
  • Margherita Pezzullo
  • Eloise Mastrangelo
  • Romina Croci
  • Jacques Rohayem
  • Ivonne Robel
  • Martino Bolognesi
  • Mario Milani
چکیده

Noroviruses are members of the Caliciviridae family of positive sense RNA viruses. In humans Noroviruses cause rapid onset diarrhea and vomiting. Currently Norovirus infection is responsible for 21 million gastroenteritis yearly cases in the USA. Nevertheless, despite the obvious public health and socio-economic relevance, no effective vaccines/antivirals are yet available to treat Norovirus infection. Since the activity of RNA-dependent RNA polymerase (RdRp) plays a key role in genome replication and in the synthesis/amplification of subgenomic RNA, the enzyme is considered a promising target for antiviral drug development. In this context, following the identification of suramin and NF023 as Norovirus RdRp inhibitors, we analyzed the potential inhibitory role of naphthalene di-sulfonate (NAF2), a fragment derived from these two molecules. Although NAF2, tested in enzymatic polymerase inhibition assays, displayed low activity against RdRp (IC50=14μM), the crystal structure of human Norovirus RdRp revealed a thumb domain NAF2 binding site that differs from that characterized for NF023/suramin. To further map the new potential inhibitory site, we focused on the structurally related molecule pyridoxal-5'-phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) tetrasodium salt (PPNDS). PPNDS displayed below-micromolar inhibitory activity versus human Norovirus RdRp (IC50=0.45μM), similarly to suramin and NF023. Inspection of the crystal structure of the RdRp/PPNDS complex showed that the inhibitor bound to the NAF2 thumb domain site, highlighting the relevance of such new binding site for exploiting Norovirus RdRp inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The active form of the norovirus RNA-dependent RNA polymerase is a homodimer with cooperative activity.

Norovirus (NV) is a leading cause of gastroenteritis worldwide and a major public health concern. So far, the replication strategy of NV remains poorly understood, mainly because of the lack of a cell system to cultivate the virus. In this study, the function and the structure of a key viral enzyme of replication, the RNA-dependent RNA polymerase (RdRp, NS7), was examined. The overall structure...

متن کامل

Protein-primed and de novo initiation of RNA synthesis by norovirus 3Dpol.

Noroviruses (Caliciviridae) are RNA viruses with a single-stranded, positive-oriented polyadenylated genome. To date, little is known about the replication strategy of norovirus, a so-far noncultivable virus. We have examined the initiation of replication of the norovirus genome in vitro, using the active norovirus RNA-dependent RNA polymerase (3D(pol)), homopolymeric templates, and synthetic s...

متن کامل

Poly(A)- and primer-independent RNA polymerase of Norovirus.

Replication of positive-strand caliciviruses is mediated by a virus-encoded RNA-dependent RNA polymerase (RdRp). To study the replication of Norovirus (NV), a member of the family Caliciviridae, we used a recombinant baculovirus system to express an enzymatically active RdRp protein from the 3D region of the NV genome and defined conditions for optimum enzymatic activity. Using an RNA template ...

متن کامل

Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors.

Rabbit haemorrhagic disease virus (RHDV) is a calicivirus that causes acute infections in both domestic and wild European rabbits (Oryctolagus cuniculus). The virus causes significant economic losses in rabbit farming and reduces wild rabbit populations. The recent emergence of RHDV variants capable of overcoming immunity to other strains emphasises the need to develop universally effective ant...

متن کامل

Protein-Primed and De Novo Initiation of RNA Synthesis by Norovirus 3D

Noroviruses (Caliciviridae) are RNA viruses with a single-stranded, positive-oriented polyadenylated genome. To date, little is known about the replication strategy of norovirus, a so-far noncultivable virus. We have examined the initiation of replication of the norovirus genome in vitro, using the active norovirus RNAdependent RNA polymerase (3D), homopolymeric templates, and synthetic subgeno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antiviral research

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2014